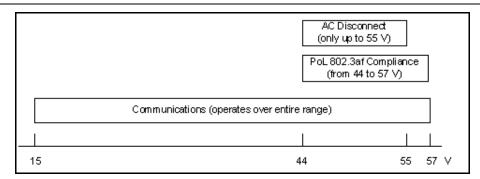


Description **Applicable Documents Key Features** Microsemi's™ PD64004AH is a 4-port, PoE Controller IEEE 802.3af-2003 and PD63000/G datasheet. mixed-signal, high-voltage Power over 802.3at-2009 compliant Ethernet (PoE) Manager designed to Catalogue Number Up to 600 mA Iport max support IEEE 802.3af-2003 and 802.3at-06-0008-058 **IETF Power Ethernet MIB** (RFC 3621) compliant 2009 PoE applications. 16 port evaluation board PD-IM-7316AH Single DC voltage input PD64004AH is used in Ethernet switches User Guide, Catalogue (44v-57v)(endspans) and midspans to enable next Number 06-0025-056 Built in 3.3v regulator generation network managers to share Twelve-channel PoE Low thermal dissipation power and data over the same cable. With manager PD64012GH (1 Ω sense resistor) full digital control via a serial Internal power-on reset datasheet. Catalogue communication interface and a minimum of Number 06-0003-058 Four ports external components, the PD64004AH can Internal power FET per port AN-152, Designing 8be placed in multi-port and highly port PoE+ System Thermal monitoring and populated Ethernet switches. PD64004AH Using PD64004AH, protection integrates power, analog and logic Catalogue Number Supports any PD64004AH functions in a single 48-pin, QFN-PS 06-0034-080 and PD64012GH package allowing compact designs. AN-140, Layout Design combination Guidelines for PoE The PD64004AH detects IEEE 802.3af-Can be cascaded for up to 2003 compliant Powered Devices (PDs) Systems, Catalogue eight PoE managers Number 06-0012-080 and 802.3at-2009 PDs which exceed I²C or UART IEEE802.3af power levels, ensuring safe AN-161, Layout communication to Host power feeding and port disconnection. Guidelines for PoE User friendly unique PoE Systems, Catalogue communication protocol The PD64004AH executes all real time Number 06-0066-080. Direct register functions as specified in the IEEE 802.3af-AN-170, Designing a communication 2003 standard and the IEEE802.3at-2009 16-port Enhanced PoE Continuous monitoring of standard including detection, 1-event System, Catalogue individual ports classification and port status monitoring. It Number 06-0042-080 Continuous system also executes system level activities such telemetries as power management, and MIB support Parameters setting per port for system management. The PD64004AH and per system is designed to detect and disable Disabling of ports through disconnected ports, using both DC and AC hardware disconnection methods, as defined in IEEE Enhanced power 802.3af-2003 and IEEE802.3at-2009. management algorithm Advanced power The PD64004AH, in conjunction with the management; up to 32 PD63000G or in Automatic mode, can be configured to support 2-pair 802.3at-2009 ports Pre-standard PD detection (up to 600 mA.) and 2-pair standard "af" power (up to 350mA) for full IEEE802.3af **Detection of Cisco devices** compliant functionality. Further, in AF Port matrix mode the PD64004AH and PD63000G can Interrupt out Hardware system status pin support 8-ports operation (when working together, the units are in Enhanced mode). LED support **Emergency power** Performance of the PD64004AH can be management with up to fully evaluated using the PD-IM-7316AH eight power supplies evaluation board. Rmode for H/W **IMPORTANT**: For the most current data, consult configuration MICROSEMI's website: http://www.microsemi.com RoHS compliant


PACKAGE ORDER INFO				
T _A (°C)	48-Pin QFNPS			
-40 to +70*/85** °C	PD64004AH***			
* Temperature range for full 802.3at-2009 (up to 600 mA) load. ** Temperature range for full standard "af" (up to 350 mA) load. *** 'H' Stands for 802.3at-2009				

Abso	lute Maximum Ratings	Package Pin Out
DGND, AGND, QGND,	-0.3 to 80 VDC ⁽¹⁾ SENSE_NEG0.3 to 0.3 VDC ⁽²⁾ -0.3 to 80 VDC ⁽¹⁾ _NEG	
PORT_SENSEX VCC _{2p5} , ADC _{2p5} V _{PERI} EXT_REG I2CINI, ASICINI MISO, MOSI, SCK, SCL, SDA, CLK, RESETN, CS0_N, CS1_N ESD (Human Body Model) Maximum junction temperature (T _{junc}) Junction-ambient thermal resistance (θ _{JA}) Junction-case thermal resistance (θ _{JC}) Lead temperature (soldering, 10 s) Storage temperature	-2 to 2 kV(3 +150° C 25 °C/W 16° C/W 300° C -40 to +125° C	NT
(1) 80 VDC is the transient vol (2) Maximum value between g	tage that can be applied for 1 minute maximum.	
	above may cause permanent damage to the device. m rating conditions for extended periods may affect	

Operating Conditions						
PARAMETER	MIN.	NOM.	MAX.	UNIT		
Operating temperature at full 2-pair 802.3at-2009 load	-40		+70	°C		
Operating temperature at full 2-pair standard "af" power (up to 350mA)	-40		+85	°C		
Operational limitations (1)	15 to 44	44 to 55	55 to 57	VDC		

- 1. Operating functions depend on the input voltage, as shown in Figure 1.
- 2. In order to get higher power drive at the PSE output ports, it is recommended to use operating voltage source Vmain > 50v

Figure 1: Operational Ranges

Electrical Characteristics

DC Characteristics for Digital Inputs and Outputs					
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	REMARKS
Pin Name	DISABLE	PORTS, SCI	=	•	
Туре	Schmitt Tr	igger CMOS	input, TTL le	evel with	internal pull-up
High level input voltage	V_{IH}	2.0		VDC	
Low level input voltage	V_{IL}		8.0	VDC	
Input voltage hysteresis		0.3		VDC	
Input high current	I _{IH}	-1	+1	μΑ	
Input low current	I_IL	-1	+1	μΑ	
Pin Name	SCL				
Туре	Schmitt Tr	igger CMOS	input, TTL le	evel with	internal pull-up
High level input voltage	VIH	2.0		V	
Low level input voltage	VIL		0.8	V	
Pin Name		O, CS0_N, C			
Туре	CMOS I/O,	TTL level wit	h no interna	ıl pull up/	pull down resistor
High level input voltage	VIH	2.0		VDC	
Low level input voltage	VIL		0.8	VDC	
Input voltage hysteresis		0.3		VDC	
Input high current	IIH	-1	+1	μA	
Input low current	IIL	-1	+1	μΑ	
High level output voltage		VPERI-0.4 VDC		VDC	lout = 2 mA

DC Characteristics for Digital Inputs and Outputs					
PARAMETER	SYMBOL	MIN.	MAX.	UNIT	REMARKS
Low level output voltage			0.4	VDC	lout = 2 mA
Tri state output current		-1	+1	μΑ	
Pin Name	RESET_N,	SDA			
Туре	CMOS oper	n drain outpu	t with Schm	itt Trigge	r input, TTL level
High level input voltage	VIH	2.0		VDC	
Low level output voltage	VOL		0.4	VDC	lout = 6 mA
Low level input voltage	VIL		0.8	VDC	
Input voltage hysteresis		0.3		VDC	
Off state output current		-1	+1	μA	
Pin Name	SDA_OUT, INT				
Low Level output voltage			0.4	VDC	lout = 6 mA
Off state output current		-1	+1	uA	

Electrical Characteristics for Analog I/O Pads							
PARAMETER	MIN.	MAX.	UNIT	REMARKS			
Pin Name	VPORT_P	VPORT POSx					
Operating voltage	44	62	VDC				
Pin current consumption	-5	+10	μΑ	Port driver off, Vport differential measurement off, AC generator off			
Pin Name	VPORT_NE	EGx, REF_P	ORT_NE	G			
Operating voltage	44	62	VDC	Port driver off, Vport differential measurement off, AC generator off			
Pin current consumption	-10	+10	μA				
Pin Name	PORT_SE	NSEx					
Operating voltage	0	1.48	VDC	With external 2 ohms (1%) to ground			
Internal current consumption		20	μA				
Pin Name	VMAIN						
Operating voltage	44	57	VDC				
Vmain current consumption		10	mA	Total on Vmain			
Pin Name	CP out						
Operating voltage	44	68	VDC				
Pin current consumption		5	mA				
Pin Name	ADC2p5, V	CC2p5, VPE	RI, EXT_	REG			
ADC2p5 output voltage	2.45	2.55	VDC				
ADC2p5 internal current consumption		6	mA	Recommended external cap. = 47 to 135 nF			
VCC2p5 output voltage	2.37	2.62	V	Recommended external cap. = 47 to 135 nF			
VCC2p5 internal current		5	mA				
consumption							
VPERI output voltage	3.10	3.46	VDC	Recommended external cap. = 1 to 4.7 μF			
VPERI external current load		6	mA	Without external NPN			
EXT_REG output current		30	mA	When using external NPN for VPERI			

Electrical Characteristics for Analog I/O Pads							
PARAMETER MIN. MAX. UNIT REMARKS							
Pin Name	ASICINI, I2	ASICINI, I2CINI					
Operating voltage	0	ADC2p5	VDC				
Current consumption	-1	+1	μΑ				
Pin Name	I _{REF}						
Output voltage	1.21	1.34	VDC	With external 24.9 k Ω resistor to ground			
Pin Name:	PWRINI			· · · · · · · · · · · · · · · · · · ·			
Operating voltage	0	100mV	V	From ADC2p5			
Internal current source	+1.5	3	uA				

Dynamic Characteristics

The PD64004AH utilizes three programmable current level thresholds (I_{min} , I_{cut} , I_{lim}) and two timers (T_{min} , T_{cut}). Loads that dissipate more than I_{cut} for longer than T_{cut} (OVL_S to OVL) are classified as 'overloads' and are automatically shutdown. If output power is below I_{min} for more than T_{min} (UDL_S to UDL) the PD is classified as 'no-load' and is shutdown.

Automatic recovery from overload and no-load conditions is attempted every T_{OVLREC} and T_{UDLREC} periods (typically 5 and 1 seconds, respectively). Output power is limited to I_{lim} , which is the maximum peak power allowed at the port.

PARAMETER		CONDITIONS	MIN.	TYP.	MAX.	UNIT
Automatic recovery from overload shutdown	T _{OVLREC}	T _{OVLREC} value, measured from port shutdown		5		s
Automatic recovery from no-load shutdown	T _{UDLREC}	value, measured from port shutdown		1		s
Cutoff timers accuracy		Typical accuracy of Tcut		3		ms
Inrush current	I _{Inrsh}	I _{Inrsh} AF mode – t = 50 ms, Cload = 180 uF max. IEEE802.3at mode – t = 33 ms		654	450 692	mA
Output current operating range	Iport	Continuous operation after startup period.	10		600	mA
Output power available, operating range	P _{port}	Continuous operation after startup period, at port output.	0.57		30	W
Off mode current	I _{min1}	Must disconnect for t greater than TUVL	0		5	mA
	lmin2	May or may not disconnect for t greater than TUVL	5	7.5	10	mA
PD power maintenance request drop-out time limit	T _{PMDO}	Buffer period to handle transitions for both AF mode and IEEE802.3at mode	300		400	ms
Over load current detection range	Icut	AF mode - Time limited to TOVL	350		400	mA
Ū		IEEE802.3at mode - Time limited to TOVL	600		615	
Over load time limit	TOVL	AF mode	50		75	ms
		IEEE802.3at mode		33		
Turn on rise time	T _{rise}	From 10% to 90% of V_{port} (Specified for PD load consisting of 100 uF capacitor in parallel to 200 Ω).	15			us
Turn off time	Toff	From Vport to 2.8 VDC			500	ms

Thermal Data (Power Consumption)

The internal power consumption of a single PD64004AH from the DC input is based on:

Input voltage range: 44 to 57 V_{DC} Input current: 7 mA maximum

 $P_{MAIN} = V_{MAIN} \times I_{MAIN}$

Assuming the worst case, maximum power consumption is given by:

 $P_{MAIN\ MAX}$ = 57 V_{DC} x 7 mA = 0.4 W

Device Power Dissipation

The PD64004AH integrates four power MOSFETs. Each MOSFET is characterized by:

- Drain-to-Source resistance, $R_{DSON} = 0.3 \Omega$ typ; 0.5 Ω maximum
- Drain-Source current, I_{DS} = 600 mA max.

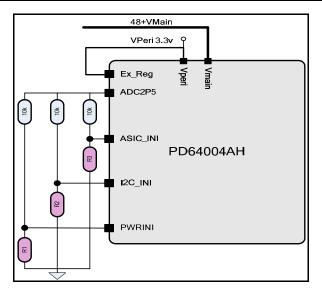
Hence, maximum power dissipation $P_{MOSFET\ MAX}$ of a single PD64004AH device (for 4 MOSFETs) is given by: $[(I_{DS})^2 \times R_{DSON_MAX}] \times 4 = [(0.600\ A)^2 \times 0.5\ \Omega] \times 4 = 0.73\ W$

Power dissipation of the internal charge pump, P_{CP} is 0.21 W.

Hence total power dissipation P_{TOTAL}, under maximum conditions is given by:

$$P_{TOTAL} = P_{MAIN_MAX} + P_{MOSFET_MAX} + P_{CP}$$

= 0.4 W + 0.73 W + 0.21 W
= 1.34 W



Protection Mechanism

The PD64004AH includes an internal thermal protection feature, designed to protect the junction from overheating;

Configuration Pins

Three main configuration pins are utilized in the PD64004AH to reduce the need for communication (Figure 2).

Figure 2: Electric Connection of Configuration Pins

Power_ini

The power limit parameter is set by a resistor divider that actually sets the voltage at pin #16. There are 16 voltage levels that provide various power limit levels and guard-band levels as shown below:

Mode Number	PWRINI Voltage Level**	Power Limit (W)	Guard Band (W)
1*	2.40 VDC to 2.50VDC	800	21
2	2.24VDC to 2.28VDC	22	8
3	2.08VDC to 2.13VDC	30	8
4	1.92VDC to 1.97VDC	35	8
5	1.76VDC to 1.82VDC	40	8
6	1.60VDC to 1.67VDC	45	8
7	1.44VDC to 1.52VDC	50	10
8	1.28VDC to 1.36VDC	55	10
9	1.13VDC to 1.21VDC	60	10
10	0.97VDC to 1.06VDC	65	10
11	0.81VDC to 0.90VDC	70	10
12	0.65VDC to 0.75VDC	80	13
13	0.49VDC to 0.60VDC	90	13
14	0.33VDC to 0.44VDC	100	13
15	0.16VDC to 0.29VDC	110	13
16	0.00VDC to 0.14VDC	800	21

^{*} This mode should be set for applications that have a 2 Ω Rsense only. All other modes are for 1 Ω Rsense applications.

ASIC_INI

PoE Manager's configuration is performed via the ASIC_INI pin, as shown below. The ASIC_INI signal is converted into a 10-bit register (A/D). Once a hard reset pulse is detected, the data is latched into an internal mode register.

Mode Name	ASIC_INI Voltage Level
802.3at-2009 mode (including standard AF mode)	0.33v to 0.60v

^{**}The above voltage values are calculated assuming that the ADC2p5 voltage is 2.5 VDC with accuracy of ±2%.

Pinout Description

	Funct	ional Pin Description		
Name	Pin#	Description		
VPORT POS0	1.	Port 0 positive voltage feeding		
VPORT POS1	2.	Port 1 positive voltage feeding		
VPORT POS2	3.	Port 2 positive voltage feeding		
VPORT POS3	4.	Port 3 positive voltage feeding		
Reserved	5.	Not connected		
Reserved	6.	Not connected		
Reserved	7.	Not connected		
VMAIN	8.	Main voltage supply		
CP IN	9.	Charge pump input, Vmain		
CP OUT	10.	Charge pump output pulse		
REF PORT NEG	11.	Port negative reference		
Reserved	12.	Not connected		
TEST MODE	13.	Test mode pin – connect to AGND		
AGND	14.	Analog ground		
Reserved	15.	Not connected		
PWRINI	16.	Preset power limit values		
Reserved	17.	Not connected		
MOSI	18.	SPI bus, master data out/slave in		
DGND		· · · · · · · · · · · · · · · · · · ·		
	19.	Digital ground		
DISABLE_PORTS_	20.	Disable all ports power – active low		
MISO	21.	SPI bus, master data in/slave out		
CS0_N	22.	SPI bus, chip select 0		
SDA_OUT	23.	Third pin in I ² C protocol		
CS1_N	24.	SPI bus, chip select 1		
SCK	25.	SPI bus, serial clock I/O		
SCL	26.	I ² C bus, serial clock Input		
SDA	27.	I ² C bus, open drain		
RESET_N	28.	Active Low Reset I/O		
IREF	29.	Current reference		
ASICINI	30.	Analog input for ASIC initialization		
VCC2p5	31.	Internal 2.5v supply (do not use!)		
I2CINI	32.	Analog input for I ² C initialization		
QGND	33.	Quiet analog ground		
ADC2p5	34.	ADC reference (do not use!)		
EXT_REG	35.	External regulation		
VPERI	36.	Regulated 3.3v power source		
INT	37.	Interrupt, open drain		
Reserved	38.	Not connected		
AGND	39.	Analog ground		
VPORT_NEG3	40.	Port 3 negative voltage feeding		
PORT_SENSE3	41.	Channel current monitoring		
PORT_SENSE2	42.	Channel current monitoring		
VPORT_NEG2	43.	Port 2 negative voltage feeding		
PORT_SENSE1	44.	Channel current monitoring		
VPORT_NEG1	45.	Port 1 negative voltage feeding		
PORT_SENSE0	46.	Channel current monitoring		
SENSE_NEG	47.	Port sense reference		
VPORT_NEG0	48.	Port 0 negative voltage feeding		

Interrupt State - Machine

The interrupt state-machine obviates the need for communication between the host CPU and the PD64004AH. When a PoE event occurs, the interrupt pin level drops to 'low', thus the host CPU is notified. Then the host CPU requests information related to the event.

This method differs from the polling method, where the Host controller prompts all PoE Managers cyclically in order to receive information related to a PoE event.

When an event occurs, the type of event is entered into the main interrupt register which is the first register to be read by the Host after receiving an interrupt. There are two main event types.

The first event is a system event and the second is a port event. When a port event occurs, the host CPU should read another register to ascertain which port caused that event.

Port event registers are individually cleared right after reading them (clear on read).

If desired, one or more registers can be masked so as to avoid receiving non-desired interrupts by the Host. The following are the main events supported by the interrupt:

- · Port power switched on
- Port power switched off due to:
 - Port disable
 - Overload, short condition or over temperature
 - AC disconnect or DC disconnect
 - Power management algorithm
- Port was started up
- AF detection completed successfully
- AF classification routine was completed.
 Asserted at the end of classification cycle.
- Vmain out-of-range
- Temperature out-of-range

Block Diagram

The PD64004AH PoE Manager complies with all the IEEE standard 802.3af-2003 detection requirements. PD64004AH is built around two major sections (Figure 3):

- · A common digital section that serves all four channels
- Four separate identical channels for driving ports

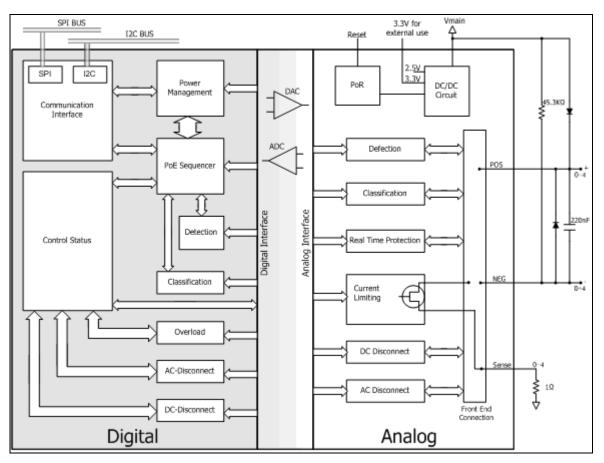


Figure 3: Internal Block Diagram

Communication Interface

The PD64004AH incorporates two communication interfaces. The first interface is an SPI bus which connects the PD63000G PoE Controller to the PD64004AHs. The second interface is an I²C used to communicate with the Host. Both interfaces transmit the contents of the internal registers between the PD64004AH logic and the PoE Controller.

Power Management

Receives data from the PoE sequencer and determines which port is to be connected and which port is to be disconnected, in accordance with the system's total power. This block is active in the **Master chip only!**

Control Status

Several macros control the port enable function and others control the port disconnect function.

- Port enable: Resistor Line Detection, Classification.
- Port disable: AC Disconnect, DC Disconnect and Overload Logic.

These macros are connected to the Channel RT Control Status circuitry. Based on the inputs from these macros, the Channel RT controller starts the shutdown process or the recovery process.

This is performed in accordance with the pre-programmed parameters for different time windows.

PoE Sequencer	AC Disconnect	Current Limit
The PoE Sequencer is the core of the Digital section; it includes an internal state machine that controls the macros (described below) and transfers the data from those macros.	The system applies a sinusoidal signal to the positive port terminal. The voltage developed on the port terminals is proportional to the load value. If the load is high, the AC component riding on the port terminals is low. If the load is low, the AC component is high. A dedicated circuit measures the AC component level and compares it with a pre-defined value stored in a register. Based on the comparison's results, the system determines whether to disable a port or not.	This circuit continuously monitors the current of powered ports and limits the current to a specific value in cases where an over load occurs. If the current exceeds a specific level, the system starts measuring the elapsed time. If this time period is greater than a preset threshold, the port is disconnected.
Detection	DC Disconnect	Power on Reset (POR)
The PoE Controller or the PoE sequencer generates a request to apply separate voltage levels to the output port. A measurement circuit monitors the difference between the various levels. Voltage differences are compared with values stored in the registers. By comparing these values, the system can determine whether to enable a port or not.	This block senses when the port current drops below 7.5 mA. If this is the case, a flag is 'raised' and timers in the Channel RT Controller start counting. The Channel RT Controller acts in accordance with preprogrammed thresholds limits and time windows, prior to initiating a disconnect status for that port. The circuitry takes into account PDs that modulate their current consumption, disconnecting them only if necessary.	The POR Monitors the internal DC levels; if these voltages drop below specific thresholds, a Reset signal is generated and the PD64004AHs are reset via the RESET_N pin.
Classification	DC/DC Circuit	Real Time Protection
Upon request from the PoE Controller or from the PoE sequencer, the state machine applies a regulated 18 VDC to the port output. The current is measured by comparing the real current flow with a number of preset thresholds; in this manner the class is verified.	This circuit produces 2.5V and 3.3V, derived from the Vmain main supply.	This circuitry performs all real time measurements and sends the results to the logic circuitry in order to determine whether to disconnect a port or not.
Overload		
This block senses when the port current exceeds the maximum current level as specified in the IEEE-802.3af standard, and disconnects the port if required.		

Application Information

The PD64004AH can be integrated into a number of applications such as Ethernet switches, routers, Midspans, and more. Examples of such applications are described below:

- Integrated directly into a switch:
 Facilitates entire PoE concept, by including the IC(s) on the main switch's PCB.
- Daughter board add-on: Which the IC is integrated into a small PoE dedicated PCB, mounted on top of the switch's main PCB.
- Midspans: Stand alone devices, installed between the Ethernet switch and PDs (Powered Devices) such as telephone, camera, wireless LAN, etc.).
 - These Midspans include the PD64004AH IC as a PoE control element, designed to inject power over the communication lines.

Figure 4 through Figure 6 provide detailed schematic diagrams for various applications of the PD64004AH.

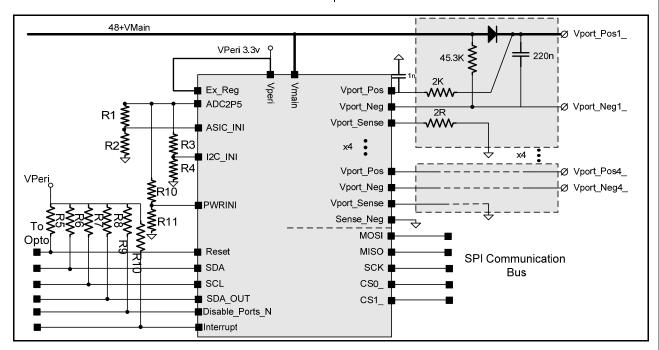


Figure 4: Single-port Application with AC Disconnect Support

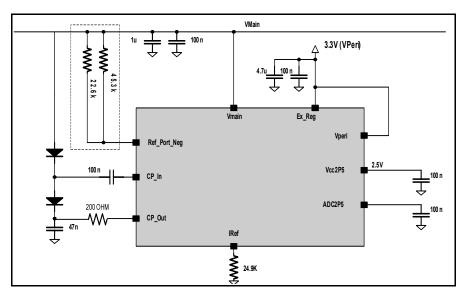


Figure 5: Typical Power Filtering

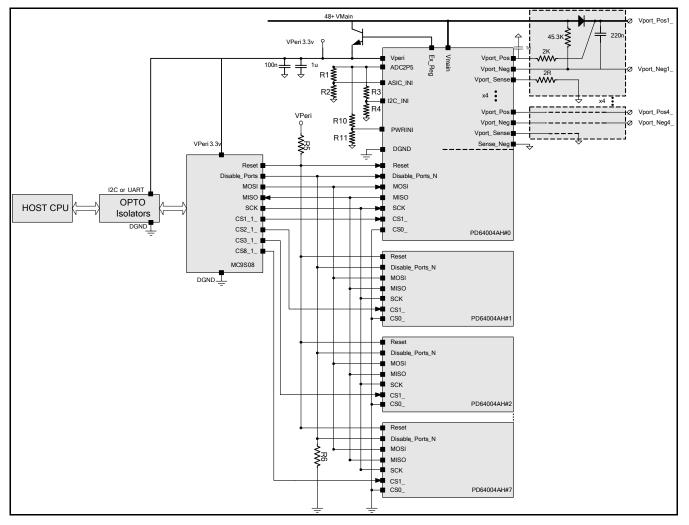


Figure 6: Typical Application

Package Information

The PD64004AH is housed in a 48QFN-PS plastic package, 7 x 7 x 0.9 mm, meeting JEDEC's MS-026 package outline and dimensions. Exposed pad (for heat-sinking purposes) dimensions are 5.00 by 5.00 mm

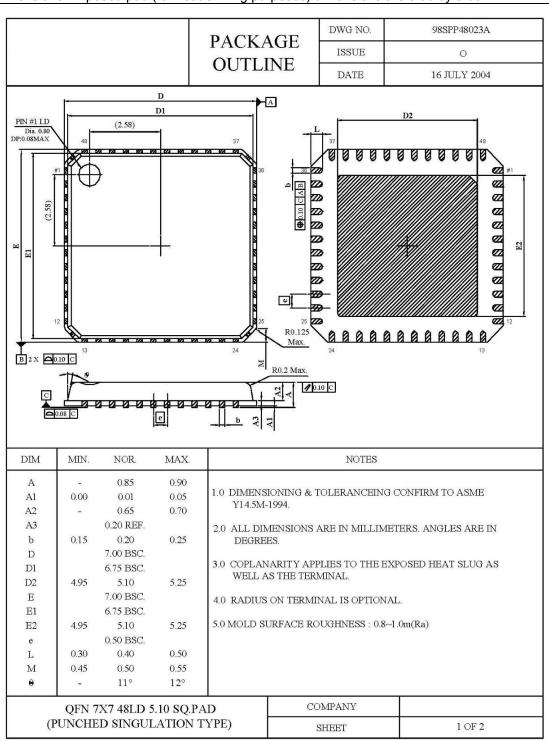


Figure 7: PD64004AH Mechanical Dimensions

Feature	Description		
IEEE 802.3af-2003	·		
Compliant	The PD64004AH meets all IEEE-802.3af-2003 standard requirements including:		
Compliant	Multi-point resistor detection DD 1 event elegification function		
	 PD 1-event classification function AC disconnection and DC disconnection functions 		
000 0 at 0000 0 amentions	Supports back-off feature for Midspan implementation Fightles data stigs and requires of 800 2 at 2000 Constitute DR with the true pair.		
802.3at-2009 Compliant	Enables detection and powering of 802.3at-2009 Compliant PDs via the two pair for pre-standard PDs.		
IETF Power Ethernet	The PD64004AH meets all IETF power Ethernet MIB (RFC 3621) requirements		
MIB (RFC 3621)	including port enable/disable, port priority, classification, error counters and		
Compliant	system/port power consumption.		
Single DC Voltage Input	The PD64004AH requires a single DC voltage input: 44V to 57V. No additional		
	voltage inputs (for example 3.3V/5V) are required to operate the PoE system.		
Built-In 3.3 Regulator	The PD64004AH, with few additional components can provide 3.3V source (up		
	to 30mA) for other peripherals such as a PoE Controller and opto-couplers.		
Low thermal	The PD64004AH has a very low thermal dissipation. It has an exposed pad that		
dissipation (1Ω sense	keeps the PoE Manager at a low temperature. The Rsense in PD64004AH applications is only 1 Ω which keeps the peripheral components at a low		
resistor)	temperature as well.		
Internal Power-on	The power-on reset circuitry monitors the internal voltage regulators (2.5V, Vperi		
Reset	3.3V and 10V). If one of these voltages drops below a pre-defined level, the		
	PD64004AH is reset until all voltages rise above the proper levels again.		
Supports 4 Port PoE	The PD64004AH has high port density (4 ports) integrated into a single device,		
implementations	thus saving PCB space, reducing PoE system cost and simplifying the circuit		
	design.		
Internal Power FET Per	Four power FETs are integrated into a single PD64004AH to save PCB space		
Port	and simplify the circuit design. The exposed pad under the 48 QFN package		
	dissipates the heat from the PD64004AH to the PCB.		
Thermal	The PD64004AH integrates internal thermal protection features designed to		
Monitoring/Protection	protect the junction from overheating; Three types of temperature sensors a		
	integrated on PD64004AH; two are utilized for protection and one is utilized		
	monitoring.		
Support any	PD64004AH can also be used with the PD64004AH, 4-Port PSE Manager, to		
PD64004AH and	implement more than 12 ports. Multiple PD64012GHs and PD64004AHs can b		
PD64012GH	used simultaneously. This flexibility provides multiple port options, from 12 to 96		
Combination	ports, with minimizing costs and optimizing PCB space. In this implementation,		
	either the PD64012GH or the PD64004AH can be configured as master or		
Canada un ta Finht	slave.		
Cascade up to Eight	Up to eight PD64004AHs can be cascaded to implement multiport PoE system		
PoE Managers I2C or UART	to a maximum of 96 ports. Enables I ² C communication or UART Communication between the host CPU		
Communication to Host	and the PoE controller for continuous monitoring and for port parameter setting.		
User Friendly Unique	<u> </u>		
PoE Communication	A unique 'Host CPU' - 'PoE Controller' communication protocol optimizes PoE		
Protocol	continuous monitoring and simplifies PoE parameter setting.		
Direct Register	The host CPU communicates with the PD64004AH PoE manager by writing and		
Communication	reading to/from its registers directly.		
Continuous Monitoring	The host CPU can receive on-line information per port such as:		
of Individual Ports	Port current and power measurement		
	Port class		
	 Port status (on, off, overload, and short) 		
	 Port status (on, on, overload, and short) Port matrix, interrupt events, etc. 		
	· Tort matrix, interrupt events, etc.		

Footure	Description		
Feature	Description		
Continuous System	On-line system telemetries for the host CPU including:		
Telemetries	Voltage measurement Total quarters assurementing.		
	Total system power consumption System and ICs status.		
Daniel Catting Catting	System and ICs status Configurable parameters via the heat CDI Linguisting:		
Parameters Setting per	Configurable parameters via the host CPU including:		
Port and Per System	Port priority Payer response to the properties of a superlimit. Guard hand level.		
	 Power management parameters (power limit, Guard band level, PM mode) 		
	Forced power and disable power per port		
	AC/DC disconnection method		
	LEDs parameters, port matrix, PoE Controller interrupt-out		
	masks, flags, etc.		
Disabling of Ports	The PD64004AH features a dedicated pin (Disable_Ports) enabling an		
Through Hardware	immediate disconnection of all ports. It is controlled by the host CPU. All ports		
	are disconnected when voltage level on this pin is low. This is the quickest way		
	to turn-off all ports.		
Enhanced Power	The system supports the following power management modes: Class mode,		
Management Algorithm	Allocation mode, Dynamic mode and Auto-PM mode, which combine all three		
	modes. The power management feature is a continuous real-time algorithm		
	designed to prevent power consumption beyond a predefined limit.		
	Disconnection and connection of ports is performed, as specified, in the power		
Advanced Power	management mode.		
Management for up to	Additional flags improve the power management algorithm and provide the host with more flexibility when configuring the system.		
96 Ports			
Pre-Standard PD			
Detection	Enables detection and powering of pre-standard PDs.		
Detection of Cisco	Enables detection and powering of all Cisco devices including pre-standard		
Devices	terminals.		
Port Matrix	Allows the layout designer to connect the physical ports to the logical ports when		
	desired.		
Interrupt - Out	Reduces communication overhead of the host CPU.		
	Whenever a PoE event (masked by the host CPU) occurs; the PoE Controller sends an interrupt to signal the PoE event.		
Hardware System	An optional hardware signal between the PoE Controller and the host CPU,		
Status Pin	provides the host CPU with a warning that a major failure (for example Vmain		
	out of range) has occurred.		
LED Support	Direct SPI interface to an external LED Stream circuitry. It enables the designer		
	to implement a simple LED circuit without any software code.		
Emergency Power	For systems comprising more than a single power supply, a fast port		
Management	disconnection mechanism is activated in case one of the power supplies fail		
	maintain operation and prevent collapse of other power supplies. Up to eight		
Due e de 1104/	power supplies are supported.		
Rmode – H/W	H/W pin on the PoE Controller allows hardware configuration of the following		
configuration	parameters:		
	Power management modeAC or DC disconnect		
	AC or DC disconnect All ports ON or OFF		
	IEEE 802.3af detection or IEEE 802.3af & pre-standard		
	detection		
	GELECTION		

System Description

PD64004AHs communicate with the PD63000G, PoE Controller (dedicated controller for PoE tasks), via a Serial Parallel Interface (SPI) bus. In this mode, all PD64004AHs are directly connected to the PD63000G via the SPI bus in slave mode. The switch host CPU communicates with the PD63000G via an isolated I²C or UART bus.

Figure 8 illustrates a typical application configuration.

The PD63000G controller is configured by the host CPU to initialize and control the PD64004AHs to support 802.3at-2009 PDs and/or IEEE802.3af standard PDs. The PD63000G is designed to perform enhanced sequential start-up mechanism and enhanced power management, maintaining temperature and stress levels within the specification.

802.3at-2009

When configured for 802.3at-2009, each PD64004AH can support up to 600 mA per port (30 watts at PSE output @ 50v) on all the four ports. Under this configuration, if the PD is classified as Class #4, up to 600 mA is supported. If the PD is classified as Class #0, Class #1, Class #2 or Class #3, then standard power up to 350 mA is supported. Hence when configured for IEEE802.3at-2009 both 802.3at-2009 PDs and "af" PDs are supported depending on the class information.

Standard "af" Power

When configured for standard "af" power, each PD64004AH can support up to 350 mA per port (15.4 watt at PSE output @ 44v) on all the four ports.

Figure 8: Typical Application Configuration

The information contained in the document is PROPRIETARY information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level / Date	Para. Affected/page	Description
1.0 / 14 January. 10		Initial release

© 2009 Microsemi Corp. All rights reserved.

For support contact: sales AMSG@microsemi.com

Visit our web site at: www.microsemi.com Cat. No. 06-0066-058